On Conformal Powers of the Dirac Operator on Spin Manifolds
نویسندگان
چکیده
The well known conformal covariance of the Dirac operator acting on spinor fields does not extend to its powers in general. For odd powers of the Dirac operator we derive an algorithmic construction in terms of associated tractor bundles computing correction terms in order to achieve conformal covariance. These operators turn out to be formally (anti-) self-adjoint. Working out this algorithm we recover explicit formula for the conformal third and present a conformal fifth power of the Dirac operator. Finally, we will present polynomial structures for the first examples of conformal powers in terms of first order differential operators acting on the spinor bundle.
منابع مشابه
Branson’s Q-curvature in Spin Geometry
Abstract. We first give an elementary proof of a result relating the eigenvalues of the Dirac operator to Branson’s Q-curvature on 4-dimensional spin compact manifolds. In the case of n-dimensional closed compact (spin) manifolds we then use the conformal covariance of the Dirac, Yamabe and Branson-Paneitz operators to compare appropriate powers of their first eigenvalues. Equality cases are al...
متن کاملOn a Nonlinear Dirac Equation of Yamabe Type
We show a conformal spectral estimate for the Dirac operator on a non-conformally-flat Riemannian spin manifolds of dimension n ≥ 7. The estimate is a spinorial analogue to an estimate by Aubin which solved the Yamabe problem for the above manifolds. Using Hijazi’s inequality our estimate implies Aubin’s estimate. More exactly, let M be a compact manifold of dimension n ≥ 7 equipped with a Riem...
متن کاملThe Dirac Spectrum on Manifolds with Gradient Conformal Vector Fields
We show that the Dirac operator on a spin manifold does not admit L eigenspinors provided the metric has a certain asymptotic behaviour and is a warped product near infinity. These conditions on the metric are fulfilled in particular if the manifold is complete and carries a non-complete vector field which outside a compact set is gradient conformal and non-vanishing.
متن کاملRegularity of the Eta Function on Manifolds with Cusps
On a spin manifold with conformal cusps, we prove under an invertibility condition at infinity that the eta function of the twisted Dirac operator has at most simple poles and is regular at the origin. For hyperbolic manifolds of finite volume, the eta function of the Dirac operator twisted by any homogeneous vector bundle is shown to be entire.
متن کاملDirac eigenspinors for generic metrics
We consider a Riemannian spin manifold (M, g) with a fixed spin structure. The zero sets of solutions of generalized Dirac equations on M play an important role in some questions arising in conformal spin geometry and in mathematical physics. In this setting the mass endomorphism has been defined as the constant term in an expansion of Green’s function for the Dirac operator. One is interested ...
متن کامل